自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

绿色羽毛

面朝大海 、春暖花开 !

  • 博客(105)
  • 资源 (25)
  • 收藏
  • 关注

原创 详解 Numpy.ndarray

NumPy支持比Python更多种类的数字类型,有5种基本数字类型:布尔值(bool)、整数(int)、无符号整数(uint)、浮点(float)、复数(complex)1、np.array 数组2、np.ndarray N维数组一个 ndarray是具有相同类型和大小的项目的多维容器。尺寸和数组中的项目的数量是由它的shape定义, 它是由N个非负整数组成的tuple(元组),用于指定每个维度的大小。不同的是,ndarrays可以共享相同的数据, 因此在一个ndarray中进行的更改可能在另一个

2020-11-18 20:03:35 1016

原创 Pandas 数据挖掘 & 分析
原力计划

Pandas 作为一个开源的强大的分析结构化数据的工具集, 能够进行高性能的数据处理与分析,但是 Pandas数学功能天生不足,目前只支持一些简单的回归方法,但是Pandas 可以非常高效的连接与合并数据集,支持丰富的输入输出文本格式,包括直接内存读写、CSV、Excel、纯文本、SQL 和 HDF5格式。

2020-07-08 16:06:32 1998

原创 超详细 LaTex数学公式

LaTex表达式是一种简单的、常见的一种数学公式表达形式,在很多地方都有出现,相信正在看博客的你会深有体会,LaTex表达式不难,甚至说很简单,但是对于没有没有接触过得小伙伴来说,会非常费脑,复杂的表达式到底该如何书写呢?LaTex表达式一般分为两类:

2019-10-31 15:37:19 22231 20

原创 【解析】TensorBoard 可视化

在深度学习之中,可视化是必不可少的关键一步,虽然很多时候可以将需要的信息在输出窗口打印出来,但是能表达的信息是在太少,比如 loss趋势图、acc趋势图、权重分布图等等,都难以描述出来;Tensorboard 本是为了 Tensorflow而设计的一款可视化工具,后期 Pytorch 也引入支持,极大的小伙伴们的学习难度,虽然也有其他可视化工具支持,但是 Tensorboard可以直接迁移过来使用,上手还是更快。

2021-04-29 23:24:25 76

原创 【详解】einops 优美的处理张量维度

einops has a minimalistic yet powerful API. einops 更关注的是接口:关注输入和输出是什么,而不是如何计算输出(见下方代码)。第三行给读者一个提示:这不是我们正在处理的独立的一批图像,而是一个序列(视频)。einops 使得代码更易于阅读和维护。rearrange,reduce, repeat 这3个方法,(einops教程显示了覆盖堆叠、整形、换位、挤压/解压、重复、平铺、级联、视图和无数的缩减);

2021-04-25 14:18:00 93

原创 【解析】Token to Token Vision Transformer

介绍Vision Transformer!的提出让我们看到了Transformer模型在图像方向的潜力,但其有一些缺点,如需要超大型数据集(JFT)预训练,才能达到现在CNN的精度。本文分析了ViT的一些不合理之处:直接将图片分块展开成一维向量 不利于对图片结构信息(如边缘,线条)建模冗余的Attention模块限制了特征表达,并带来运算负担基于上述两点,本文提出Tokens to Token Transformer,采用类似CNN中卷积划窗的方式,将相邻的tokens局部聚合起来,有助于建模局

2021-04-24 21:45:29 87

原创 【解析】DeLighT:深度和轻量化的Transformer(ICLR 2021)

Paper:DeLighT: Deep and Light-weight TransformerDemo:https://github.com/ sacmehta/delight基于注意力的Transformer网络被广泛用于序列建模任务,包括语言建模和机器翻译。为了提高性能,模型通常通过增加隐藏层的维度来扩展,或者通过堆叠更多的Transformer块来扩展。例如,T5使用65K的隐藏层参数,GPT-3使用96个Transformer块。然而,这样的缩放显著增加了网络参数的数量(例如,T5和GPT.

2021-04-22 22:19:39 64

原创 【解析】Vision Transformer 在图像分类中的应用(ICLR 2021)

An Image is Worth 16x16 Words:Transformers for Image Recognition at Scale代码:1、ViT原理分析:这个工作本着尽可能少修改的原则,将原版的Transformer开箱即用地迁移到分类任务上面。并且作者认为没有必要总是依赖于CNN,只用Transformer也能够在分类任务中表现很好,尤其是在使用大规模训练集的时候。同时,在大规模数据集上预训练好的模型,在迁移到中等数据集或小数据集的分类任务上以后,也能取得比CNN更优的性能。下面

2021-04-11 12:42:00 207

原创 【详解】Transformer 的框架结构

Figure1是一个seq2seq的model,左侧为 Encoder block,右侧为 Decoder block。红色圈中的部分为Multi-Head Attention,是由多个Self-Attention组成的,可以看到 Encoder block 包含一个 Multi-Head Attention,而 Decoder block 包含两个 Multi-Head Attention (其中有一个用到Masked)。Multi-Head Attention 上方还包括一

2021-04-08 14:55:00 53

原创 【典藏】详解 Self-Attention

Transformer 是 Google 的团队在 2017 年提出的一种 NLP 经典模型,现在比较火热的 Bert 也是基于Transformer。Transformer 模型使用了 Self-Attention机制,不采用RNN顺序结构,使得模型可以并行化训练,而且能够拥有全局信息。一切从 Self-Attention 开始1.1 处理Sequence数据的模型:Transformer是一个Sequence to Sequence model,特别之处在于它大量用到了self-atten.

2021-04-07 18:54:13 122

原创 【BackBone】VGGNet复现 代码解析

Backbone 是对图像进行特征提取,这一部分是整个CV任务的根基,后续的下游任务都是基于提取出来的图像特征去工作。 因此Backbone是基石,也是开始CV学习的第一步~感兴趣的小伙伴可以关注我的专栏:【Paper】Backboneintro:ICLR 2015论文中文翻译:https://www.cnblogs.com/moeyu/p/14244065.htmlarXiv:Very Deep Convolutional Networks for Large-Scale Image Recogn

2021-04-04 15:20:01 54

原创 COCO/VOC 数据集加速下载

方法一:Google gsutil工具MSCOCO数据集较大,可以使用Google gsutil工具搭配命令行下载sudo apt-get install aria2aria2c -c <url>即为COCO官网下载地址train2017:http://images.cocodataset.org/zips/train2017.zipval2017:http://images.cocodataset.org/zips/val2017.ziptrain2014:http://

2021-03-23 15:42:02 311

原创 Win/Mac 安装 pycocotools 失败解决办法

对于目标检测还有图像分割,COCO是一个经典的数据集,但是COCO的安装过程还是比较麻烦的。在此记录了 win/mac 系统的安装教程,希望对大家有帮助。1、Win系统安装法一、pip安装先下载git,下载地址如右:Git - Downloading Package然后在pycocotools官网阅读readme 注释在git终端使用命令pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAP

2021-03-23 14:05:05 110

原创 Pycharm中不显示latest version

使用pycharm更新插件,但是不显示latest version,看不到最新版本并且进入某插件查看版本信息,可选择的版本中也是空解决办法好像是镜像源的问题,更改 manage repositories里的镜像源就出现了

2021-03-09 11:00:00 241 1

原创 【解释】Word2vec 词嵌入

在NLP 里面,最细粒度的是 词语,词语组成句子,句子再组成段落、篇章、文档。所以处理 NLP 的问题,首先就要拿词语开刀。举个简单例子,判断一个词的词性,是动词还是名词。用机器学习的思路,我们有一系列样本(x,y),这里 x 是词语,y 是它们的词性,我们要构建 f(x)->y 的映射,但这里的数学模型 f(比如神经网络、SVM)只接受数值型输入,而 NLP 里的词语,是人类的抽象总结,是符号形式的(比如中文、英文、拉丁文等等),所以需要把他们转换成数值形式,或者说——嵌入到一个数学空间里,这种嵌

2021-02-06 20:45:10 85

原创 范数 为何物?

在机器学习 & 深度学习中常常用到范数,那么范数到底是干什么用的呢?其实范数的主要作用是衡量一个向量的大小,就是将向量映射到非负值的函数。直观讲就是:向量 xxx 的范数衡量 从原点到点 xxx 的距离。形式上,LpL^pLp 范数定义为:∥x∥p=(∑i∣xi∣p)1p\Vert x \Vert_p = \Biggl( \sum_i { \vert x_i \vert }^p \Biggr)^{\frac1p}∥x∥p​=(i∑​∣xi​∣p)p1​1、欧几里得范数 – L2L

2021-01-17 12:07:27 48

原创 【记录】PIL img.getexif()获取图像信息

from PIL import Imageimg = Image.open('./images/pic_hd.jpg')key = ''exif_data = img.getexif()[key]print(exif_data)以字典格式存储信息:key:36867/36868 拍摄时间271 相机pinpai272 相机型号

2021-01-09 21:47:42 196

原创 详解 argparse库使用

argparse是python内置的命令行参数解析模块,可以用来为程序配置功能丰富的命令行参数,方便使用,本文总结一下其基本用法。argparse是python标准库里面用来处理命令行参数的库命令行参数分为位置参数和选项参数:调用简介:用于对python脚本的解析,比如像查看xxxx.py的帮助信息./xxxx.py -h基本使用import argparse# 创建解析器parser = argparse.ArgumentParser(description = 'This is

2020-12-31 20:00:08 90

原创 Pytorch 读取自定义数据集

本文将涉及以下几个方面:自定义数据集基础方法使用 Torchvision Transforms换一种方法使用 Torchvision Transforms结合 Pandas 读取 csv 文件结合 Pandas 使用__getitem__()使用 Dataloader 读取自定义数据集自定义数据集基础方法首先要创建一个 Dataset 类:from torch.utils.data.dataset import Dataset class MyCustomDataset(Data

2020-12-04 21:02:01 301

原创 Pytorch 构建数据集&数据加载

DataLoader :将自定义的Dataset根据batch size大小、是否shuffle等封装成一个Batch Size大小的Tensor,用于后面的训练。DataLoader(dataset , batch_size=1 , shuffle=False , sampler=None , batch_sampler=None , num_workers=0 , collate_fn=None , pin_memory=False , d

2020-11-28 16:59:57 300

原创 Pytorch 公开数据集

为了方便深度学习模型的研究,网络有很多公开的数据集可供下载;对于特殊任务的深度学习任务,如果需要,则可以自行收集 & 标注数据集;根据数据集的大小,可以分为:小型数据集、重型数据集 & 大型数据集1、小型数据集 (MNIST、CIFAR – 图像分类)小型数据集在 100MB以内,一般数据量在 10410^4104 张图片以内;对于小型数据集,代表的有 MNIST、CIFAR数据集,这两个数据集都是分类任务的数据集;MNIST是手写数字数据集,所有的图像都是 28x28 大小的黑白

2020-11-28 15:00:01 297

原创 Pytorch 常用损失函数

基本用法:criterion = LossCriterion() # 构造函数有自己的参数loss = criterion(x, y) # 调用标准时也有参数计算出来的结果已经对mini-batch取了平均分类和回归的区别:在于输出变量的类型。定量输出称为回归,或者说是连续变量预测;定性输出称为分类,或者说是离散变量预测。分类问题1、class torch.nn.L1Loss(size_average=True)创建一个衡量输入x(模型预测输出) 和 目标y之间差的绝

2020-11-26 19:35:35 541

原创 Pytorch 常用 optimizer

torch.optim 是一个实现了各种优化算法的库。大部分常用的方法得到支持,并且接口具备足够的通用性,使得未来能够集成更加复杂的方法。为了使用torch.optim,你需要构建一个optimizer对象。这个对象能够保持当前参数状态并基于计算得到的梯度进行参数更新。构建 为了构建一个Optimizer,你需要给它一个包含了需要优化的参数(必须都是Variable对象)的iterable。然后,你可以设置optimizer的参 数选项,比如学习率,权重衰减,等等。

2020-11-25 21:45:08 668

原创 详解 Pytorch.random

以下torch 方法默认返回的是 CPU torch.Generator. 除了以下常用 torch方法以外, 还可以通过 torch.from_numpy(array) 将 Numpy的数组转换为torch张量;1、torch.rand() 返回区间 [ 0,1) 上均匀分布的随机数填充的张量。张量的形状由变量的参数大小定义。Parameters: - size (int...) 定义输出张量形状的整数序列;可以是可变数量的参数,也可以是像List或tuple这样的集合。

2020-11-25 09:55:00 1110

原创 【图解】Pytorch 转置卷积操作

在深度学习模型中,卷积层绝对是最常用的基本操作,因此学习好卷积操作至关重要。卷积运算是线性变换的一种,而且属于一种稀疏连接的线性变换(不同与全连接的线性变换层,其是稠密连接的线性变换)。卷积操作的运算涉及两个张量,第一个张量是输入张量,第二个是线性变换的权重张量(也称为卷积核 or 滤波器)

2020-11-22 09:47:00 458 2

原创 【超全】正则表达式 元字符匹配模式

1、常用 flags 标记: 方法 描 述 | re.I (re.ignorecase): | 忽略大小写| re.M (re.multiline): | 多行模式,改变’^‘和’$‘的行为| re.S (re.dotall): | 点任意匹配模式,改变’.'的行为| re.L (re.locale): | 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定| re.U (re.unicode): | 使预定字符类

2020-11-20 19:59:59 226

原创 详解 Python 正则表达式

正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。re 模块使 Python 语言拥有全部的正则表达式功能。compile 函数根据一个模式字符串和可选的标志参数生成一个正则表达式对象。该对象拥有一系列方法用于正则表达式匹配和替换。re 模块也提供了与这些方法功能完全一致的函数,这些函数使用一个模式字符串做为它们的第一个参数。文章目录Re库的主要功能:常用 flags 标记:正则表达式模式匹配 特殊字符类re.match 函数re.search 函数re.match与

2020-11-20 19:43:21 358 1

原创 Numpy 常量
原力计划

NumPy包括几个常量:np.e、np.pi、 np.inf、 np.nan、np.NINF、np.PZERO & np.NZERO、np.euler_gamma、np.newaxis文章目录np.enp.pinp.infnp.nannp.NINFnp.PZERO & np.NZEROnp.euler_gammanp.newaxisnp.eexp : 指数函数日志:自然对数。也称为欧拉的常数,自然对数的基础,纳皮尔的常数。e = 2.71828182845904523536028

2020-11-19 22:05:44 722

原创 详解 1x1 卷积核

表面看来,1x1 卷积核似乎并不是真正的滤波器,它只是将图像的每个点都乘以 1 个权重,再加上 1个偏置;因此,通过 N个 1x1 卷积核,只需少量参数,就能将 M张图像变为 N张图像;应用场景如需将图像分为 N类,可在最后用 1x1 卷积层 将 M张图像转换为 N张图像,在通过全局池化变为 N个数字,送入 Softmax计算输出;可用 1x1 卷积层作为 瓶颈层。假设输入通道是 256个,要求经过 3x3卷积,最后输出通道也是 256个,那么有 2种实现方式:直接送入3x3 卷积层,

2020-11-17 13:33:34 460

原创 Pdfminer 分析

pdfminer分析解析PDF是一件非常耗时和内存的工作,因此PDFMiner使用了一种称作lazy parsing的策略,只在需要的时候才去解析,以减少时间和内存的使用。要解析PDF至少需要两个类:PDFParser 和 PDFDocumentPDFParser 从文件中提取数据PDFDocument 保存数据另外还需要PDFPageInterpreter去处理页面内容,PDFDevice将其转换为我们所需要的。PDFResourceManager用于保存共享内容例如字体或图片。比较重要

2020-11-07 23:36:22 234

原创 Mac下终端 pip及 Python 配置

Mac两个bin目录相同点/usr/bin和/usr/local/bin都是用来存储终端命令二进制文件或者命令的软链接这两个bin目录都是已经包含在环境变量里的目录,程序放在里面或者链接到里面命令就可以在终端里直接执行。不同点Mac的/usr/bin目录是不允许增删文件的;/usr/local/bin增删文件来实现在终端里直接运行,只需要有管理员权限。注意搜索目录时最前面的”/”不能缺少Mac的终端的用户可配置文件可配置文件根据终端类型分为两种,这些文件都是隐藏的,语法结构相

2020-10-31 10:38:25 419

原创 NJ68 键盘说明书

蓝牙操作长按 Fn + Q/W/E 3秒,蓝牙键盘进入配对状态,指示灯快闪;打开移动设备(如手机)蓝牙,选中 keydous;在 NJ68键盘上输入 配对码,然后按回车键,操作完成;现在同时把手机/平板/笔记本的蓝牙都打开,通过短按 Fn + Q/W/E 即可进行多设备的切换,短按 Fn + E 连接笔记本;温馨提示: WI-FI 信号会对蓝牙信号造成一定干扰,所以蓝牙接收器不能离 WI-FI信号源太近。灯光操作Fn + ESC = 退出灯效Fn + \| =

2020-10-13 19:44:42 8504 1

原创 小序 super() 函数

如果你使用的是新版Python,就应使用函数super。这个函数只适用于新式类,而你无论如何都应使用新式类。调用这个函数时,将当前类和当前实例作为参数。对其返回的对象调用方法时,调用的将是超类(而不是当前类)的方法。因此,在SongBird的构造函数中,可不使用Bird, 而是使用super(SongBird, self)。另外,可像通常那样(也就是像调用关联的方法那样)调用方法 __init__ 。在Python 3中调用函数super时,可不提供任何参数(通常也应该这样做),而它将 像变魔术一样完成

2020-10-06 23:22:45 219

原创 cv.add & cv.addWeighted 的区别

图像加法 cv.add您可以通过OpenCV函数 cv.add() 或仅通过numpy操作 res = img1 + img2 添加两个图像。两个 图像应具有相同的深度和类型,或者第二个图像可以只是一个标量值。注意: OpenCV加法和Numpy加法之间有区别。OpenCV加法是饱和运算,而Numpy加法是模运算。见下代码例如,考虑以下示例:>>> x = np.uint8([250])>>> y = np.uint8([10])>>>

2020-10-04 22:56:36 419

原创 详解 OpenCV 中的绘图功能

在上述所有功能中,您将看到一些常见的参数,如下所示:img: 您要绘制形状的图像color: 形状的颜色。对于BGR,将其作为元组传递,例如:(255,0,0)对于蓝色。对于灰度,只需传递标量值即可。厚度: 线或圆等的粗细。如果对闭合图形(如圆)传递 -1 ,它将填充形状。默认厚度= 1lineType: 线的类型,是否为8连接线,抗锯齿线等。默认情况下,为8连接线。 cv.LINE_AA 给出了抗锯齿的线条,看起来非常适合曲线。画线要绘制一条线,您需要传递线的开始和结束坐标。我们将创建一

2020-10-04 17:33:33 266 2

原创 详解 torch.max 函数

torch.max()返回输入张量所有元素的最大值。参数:input (Tensor) – 输入张量例子:>>> a = torch.randn(1, 3)>>> a 0.4729 -0.2266 -0.2085[torch.FloatTensor of size 1x3]>>> torch.max(a)0.4729torch.max(input, dim, max=None, max_indices=None) -&

2020-10-03 13:20:10 1380

原创 mac 之 homebrew

brew安装brew介绍brew是一个软件包管理工具,类似于centos下的yum或者ubuntu下的apt-get,非常方便,免去了自己手动编译安装的不便brew 安装目录 /usr/local/Cellarbrew 配置目录 /usr/local/etcbrew 命令目录 /usr/local/bin注:homebrew在安装完成后自动在/usr/local/bin加个软连接,所以平常都是用这个路径...

2020-09-30 16:47:17 213

原创 OpenCV 图像/视频 读取 & 显示

import cv2 cap = cv2.VideoCapture("test/test.mp4")#打开视频while cap.isOpened(): ret,fram = cap.read()#读取视频返回视频是否结束的bool值和每一帧的图像 cv2.imshow('a',fram) cv2.waitKey(1) # cv2.destroyAllWindows()...

2020-09-27 11:39:24 328

原创 Mac 之 Command Line Tools

喜欢通过终端访问更传统的Unix工具包的Mac用户(大部分是程序员),都会选择安装Xcode IDE的可选命令行工具子部分,也就是Command Line Tools。从MacOS High Sierra,Sierra,OS X El Capitan,Yosemite,Mavericks开始,无需先安装整个Xcode软件包,也无需登录开发人员帐户,就可以单独安装Command Line Tools。简单来讲 Command Line Tools 就是一个小型独立包,为mac终端用户提供了许多常用的工具

2020-09-18 22:36:57 963

原创 enumerate() 函数

enumerate()是python的内置函数,用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。语法以下是 enumerate() 方法的语法:enumerate(sequence, [start=0])参数sequence – 一个序列、迭代器或其他支持迭代对象。start – 下标起始位置。返回值返回 enumerate(枚举对象) 下标号 、成员。demo>>>seasons =

2020-09-16 00:10:35 679

基于LabVIEW的车牌识别系统(直接运行)

基于LabVIEW实现的车牌识别系统,解压之后可直接运行 可直接运行

2018-07-20

Parasoft C++ test 9.2官方用户手册_中文版

Parasoft C++ test 9.2官方用户手册_中文版,640页,文字高清版,非常详细。 Parasoft C++test 是一个集成解决方案,用于使一系列被广泛证明可改进软件开发团队生产力和软件质量的最佳实践得以自动化处理。通过 C++test,可进行编码策略增强、静态分析、综合代码复审、单元测试和组件测试、以及运行时错误检测,以此向团队提供一种确保 C 和 C++ 代码达到其预期功能的实用方法。

2020-04-24

小型电动直驱仿生四足机器人系统设计

12自由度的四足仿生机器人已经成为足式机器人中的一个重要门类。通常来说,机器人的复杂度和可靠性成反比关系,而四足机器人较为平衡,比双足人型机器人控制更为简单,比六足昆虫类机器人关节自由度少。随着液压伺服技术、电机驱动技术和相关控制技术的成熟,四足机器人的障碍通过能力和抗干扰能力迅速提升,让人们重燃对足式机器人面向服务、工业乃至军事领域更大可能性的希冀。随着相关技术的普及和模块成本降低,四足机器人开始走向普通实验室,本设计旨在制作一台十二自由度的小型电动直驱四足机器人,并探究以对角步态为主的相关步态控制算法,具体工作包括主控板设计制作、电路系统搭建、电机驱动调试、底层驱动代码编写、控制算法仿真移植和应用层环境感知仿真等。本设计采用盘式外转子无刷电机直接驱动足部关节,并通过矢量控制(FOC)驱动器进行较高精度的位置和扭矩控制。

2019-12-03

论文:Stanford Doggo: An Open-Source, Quasi-Direct-Drive Quadruped

论文:Stanford Doggo: An Open-Source, Quasi-Direct-Drive Quadruped 。这篇论文展示了 Stanford Doggo,它是一种准直接驱动(quasi-direct-drive)的四足机器人,具有很强的动态运动能力。该机器人能媲美或超过当前最优多足机器人的一般性能指标。且在垂直跳跃灵敏度上,即以平均垂直速度为指标,Stanford Doggo 能与表现最好的动物相媲美,并超过此前表现最好的机器人 22%。整体设计架构重点关注准直接驱动的设计方法。复现该机器人的硬件和软件都已经开源,只需要手工工具制造和组装就能完成,总成本低于 3000 美元。

2019-11-17

《统计学习方法》(第二版)代码实现

《统计学习方法》(第二版)代码实现

2021-04-20

Visual C++ Build Tools 2015 离线安装包

对于Python的一些库,经常报错安装Visual C++ Build Tools 2015即可 对于错误 error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tools": https://visualstudio.microsoft.com/visual-cpp-build-tools/

2021-03-28

SSD:Single Shot MultiBox Detector 英文原文和中文翻译版

SSD:Single Shot MultiBox Detector 英文原文和中文翻译版,希望对大家有帮助

2020-12-11

C#+EmguCV车牌识别

使用C#+EmguCV开发的车牌识别系统,安装路径可以在源代码中更改,生成的应用程序按照路径可以直接使用,具体操作需要一步一步操作,否则会出错,效果还不错

2018-04-18

Endnote 9.3.2 mac安装包及9.9.3升级包

Endnote 9.3.2 mac安装包及9.9.3升级包

2021-05-03

test_images.npy

einops 测试数据,test_images.npy

2021-04-25

Attention-is-all-you-need-data

论文 Attention-is-all-you-need 训练数据集,即Transformers的数据集

2021-04-20

30多种中英文ttf字体包,包含几个手写字体

文件包括一下字体:times new roman,中山行书百年纪念版,calibri,Christopherhand,DejaVuSansMono,方正兰亭黑,James Fajardo,Monaco,微软雅黑,仿宋,黑体,楷体,宋体,yahei_mono,仿宋_GB2312,楷体_GB2312,迷你简行楷碑等。

2018-10-26

python-3.8.8-amd64

Windows 版本的 python-3.8.8-amd64

2021-04-18

cudnn-10.2-windows10-x64-v8.1

cuDNN v8.1 for CUDA10.2,January26th,2021

2021-03-29

cudnn64_7.dll & cudart64_101.dll

cudnn64_7.dll & cudart64_101.dll 对于Tensorflow GPU版本报错可用,博主版本是 CUDA10.2版本,基本兼用其他版本

2021-03-27

计算机视觉实战:如何使用OpenCV快速构建视觉应用

计算机视觉实战:使用OpenCV快速构建视觉应用 计算机视觉实战:使用OpenCV快速构建视觉应用

2018-05-02

软件常用英语词汇汇总

软件常用英语词汇汇总软件常用英语词汇汇总软件常用英语词汇汇总软件常用英语词汇汇总软件常用英语词汇汇总软件常用英语词汇汇总软件常用英语词汇汇总软件常用英语词汇汇总

2020-12-25

Unlocker V3.0

默认的 VMware 是不支持识别苹果系统镜像的,需要先关闭虚拟机,解压缩 Unlocker v3.0.zip ,找到里面 win-install.cmd ,然后右键点击,选择以“管理员身份运行”进行解锁

2020-05-13

SoundPi 开发板外壳

百度SoundPi外壳 STL文件,SoundPi远场语音开发套件是一款软硬一体化的智能语音交互开发解决方案,采用SoundAI定制的量产麦克风阵列,集成全方向唤醒、声源测向、定向拾音、噪声抑制、混响消除、回声抵消、远场语音识别、语义理解、语音播报等多项技术。内置独家优化的DuerOS智能系统,提供生活服务、信息查询、设备控制、日程提醒、情感陪伴、链接服务等100多项功能与服务,可广泛应用于智能音箱、电视、冰箱、玩具、机器人、DOT、机顶盒、车载、可穿戴、远场遥控器等智能语音产品。

2018-02-02

Cortex-M3权威指南(中文) 完整高清带目录

Cortex-M3 权威指南 中文版本 带目录 超高清 完整版本

2018-07-21

numpy 中文数据手册

NumPy是使用Python进行科学计算的基础软件包。除了明显的科学用途外,NumPy还可以用作通用数据的高效多维容器。可以定义任意数据类型。这使NumPy能够无缝快速地与各种数据库集成。

2020-06-14

ucosIII官方英文资料+中文翻译

ucosiii系统 官方原版资源,934页,高清文字版本,可以复制粘贴,带有详细目录供查阅,适合高要求的读者使用; 对于英文水平有限的读者可以参考阅读中文翻译版本,质量相当,高清文字版本,可以复制,316页供学习阅读

2020-04-14

系统建模与仿真(第二版)张晓华 清华大学出版社

主要内容包括过程系统仿真的应用领域和进展,定量仿真建模常用方法及工业应用案例,数值积分原理、实用算法与计算程序,定性仿真基本原理,复杂过程系统定性建模方法,定性模型的推理解法,定性仿真技术在过程系统危险识别与分析、故障诊断和智能仿真训练等方面的应用案例。 《系统建模与仿真》适用于工业过程自动化、过程装备与控制工程、化学工程等专业大学本科专业教学。《系统建模与仿真》的内容有助于本科生、硕士研究生和博士研究生增加过程工业原理知识与实践知识,可以用于毕业论文阶段进行仿真建模和仿真实验的技术指导。同时也可以作为从事过程系统仿真、过程系统安全评价、化工工艺与控制安全设计、故障诊断、人工智能研发人员的技术参考书。

2018-11-21

ApoeerREC 1.0.8录屏软件

ApoeerREC 1.0.8录屏软件 ApoeerREC 1.0.8录屏软件 ApoeerREC 1.0.8录屏软件 ApoeerREC 1.0.8录屏软件

2018-05-03

Python深度学习(中文文字版)

《python Deeplearning》翻译版《python深度学习》中文翻译版 文字版 带有完整目录,非常完美,希望你喜欢

2018-11-01

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除