超详细 LaTex数学公式

LaTex表达式是一种简单的、常见的一种数学公式表达形式,在很多地方都有出现,相信正在看博客的你会深有体会,LaTex表达式不难,甚至说很简单,但是对于没有没有接触过得小伙伴来说,会非常费脑,复杂的表达式到底该如何书写呢?

LaTex表达式一般分为两类:

  • 一类是嵌入到文章中间的: ∑ i = 0 n i 2 = ( n 2 + n ) ( 2 n + 1 ) 6 \sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6} i=0ni2=6(n2+n)(2n+1)

  • 另一类是单独成行的表达式: ∑ i = 0 n i 2 = ( n 2 + n ) ( 2 n + 1 ) 6 \sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6} i=0ni2=6(n2+n)(2n+1)

所有的LaTex的书写形式都是在 $...$ 之中,只不过对于嵌入在文章中间而言 是单对的$...$,而单独成行的LaTex表达式是双对的 $$...$$

好了,废话不多说了,让我们一起探索LaTex表达式的神秘之处吧!

# 公式加粗、更改颜色、添加序号

对公式加粗需要用 \bm{ …… }加之包含其中即可

$\bm{ .... }$

更改公式字母颜色:
如果只更改个别字母,那个后面的需要用黑色再改下

\color{red}  
\color{green}   
\color{back}

\color{green}。。。。。\color{back}。。。。

∑ i = 0 n i 2 \color{green}\sum_{i=0}^n i^2 i=0ni2


给公式添加序号:在公式最后添加 \tag{…}

$$ ... \tag1$$
$$ ... \tag{1.1}$$	# 多位序号记得用{}扩起来

∑ i = 0 n i 2 = ( n 2 + n ) ( 2 n + 1 ) 6 (1.1) \sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6} \tag{1.1} i=0ni2=6(n2+n)(2n+1)(1.1)



1、希腊字母

书写表达式,少不了使用希腊字母,但是LaTex 的希腊字母是什么呢?

LaTex表达形式对应的希腊字母LaTex表达形式对应的希腊字母
\alpha α \alpha α\Alpha A \Alpha A
\beta β \beta β\Beta B \Beta B
\gamma γ \gamma γ\Gamma Γ \Gamma Γ
\delta δ \delta δ\Delta Δ \Delta Δ
\epsilon ϵ \epsilon ϵ\Epsilon E \Epsilon E
\zeta ζ \zeta ζ\Zeta Z \Zeta Z
\eta η \eta η\Eta H \Eta H
\theta θ \theta θ\Theta Θ \Theta Θ
\iota ι \iota ι\Iota I \Iota I
\kappa κ \kappa κ\Kappa K \Kappa K
\lambda λ \lambda λ\Lambda Λ \Lambda Λ
\mu μ \mu μ\Mu M \Mu M
\nu ν \nu ν\Nu N \Nu N
\xi ξ \xi ξ\Xi Ξ \Xi Ξ
\omicron ο \omicron ο\Omicron O \Omicron O
\pi π \pi π\Pi Π \Pi Π
\rho ρ \rho ρ\Rho P \Rho P
\sigma σ \sigma σ\Sigma Σ \Sigma Σ
\tau τ \tau τ\Tau T \Tau T
\upsilon υ \upsilon υ\Upsilon Υ \Upsilon Υ
\varphi φ \varphi φ\Phi Φ \Phi Φ
\chi χ \chi χ\Chi X \Chi X
\psi ψ \psi ψ\Psi Ψ \Psi Ψ
\omega ω \omega ω\Omega Ω \Omega Ω



2、运算符 & 空格

普通字符在数学公式中含义一样,除了 # $ % & ~ _ ^ \ { } 若要在数学环境中表示这些符号# $ % & _ { },需要分别表示为# $ % & _ { },即在个字符前加上\ 。

LaTex 表达式字体效果
单空格 : a \quad b a b a \quad b ab
双空格: a \qquad b a b a \qquad b ab
乘号:\times × \times ×
# # \# #
\$ $ \$ $
% % \% %
\& & \& &
\_ _ \_ _
− -



3、上下标

对于上标使用 下划线表示“ _ ” ;对于上标使用 “ ^ ”表示。比如 x i 2 x_i^2 xi2的LaTex表达式为 $x_i^2$ 。

LaTex表达式中的上下标可以叠加的,就比如 x y z {x^y}^z xyz的LaTex表达式为 ${x^y}^z$ 或者 $x^{y^z}$

在此需要注意的是:LaTex表达式默认的是 “ _ ” “ ^ ” 之后的一位才是上下标的内容,对于超过一个字母的上下标需要使用 { } 将它括起来,比如 x 2 i 2 + b x_{2i}^{2+b} x2i2+b的LaTex表达式为$x_{2i}^{2+b}$。

Latex 表达式实现Latex 表达式实现
x i 2 x_i^2 xi2x_i^2 x 2 i 2 + b x_{2i}^{2+b} x2i2+bx_{2i}^{2+b}
a ^ \hat{a} a^\hat{a} a ˊ \acute{a} aˊ\acute{a}
a ˋ \grave{a} aˋ\grave{a} a ˘ \breve{a} a˘\breve{a}
a ˉ \bar{a} aˉ\bar{a} a ~ \widetilde{a} a \widetilde{a}
a ˇ \check{a} aˇ\check{a} a ~ \tilde{a} a~\tilde{a}
a ˙ \dot{a} a˙\dot{a} a ¨ \ddot{a} a¨\ddot{a}
a ⃗ \vec{a} a \vec{a} a ^ \widehat{a} a \widehat{a}



4、log

log ⁡ \log log的表达式会稍微简单点,$\log$ 就是它的LaTex表达式,同样的对于需要下标的同样使用下划线表示 “ _ ” , 对于多个字符组成的需要添加 { } 将其包括。

LaTex表达形式实际效果
$\log_{21} {xy}$ log ⁡ 21 x y \log_{21} {xy} log21xy



5、括号

LaTex表达式中的 ( ) 、 [ ] 均可以正常使用,但是对于 { } 需要使用转义字符使用,即使用 “\{” 和 “\}” 表示 { }

LaTex表达形式实际效果
\left(…\right) ( … ) \left(…\right) ()
\vert ∣ \vert
\Vert ∥ \Vert
\langle ⟨ \langle
\rangle ⟩ \rangle
\lceil ⌈ \lceil
\rceil ⌉ \rceil
\lfloor ⌊ \lfloor
\rfloor ⌋ \rfloor
\Biggl(\biggl(\Bigl(\bigl((x)\bigr)\Bigr)\biggr)\Biggr) ( ( ( ( ( x ) ) ) ) ) \Biggl(\biggl(\Bigl(\bigl((x)\bigr)\Bigr)\biggr)\Biggr) (((((x)))))
$\vert x \vert$ ∣ x ∣ \vert x \vert x
f(x)=\begin{cases} x = \cos(t) \\y = \sin(t) \\ z = \frac xy \end{cases} f ( x ) = { x = cos ⁡ ( t ) y = sin ⁡ ( t ) z = x y f(x)=\begin{cases} x = \cos(t) \\y = \sin(t) \\ z = \frac xy \end{cases} f(x)=x=cos(t)y=sin(t)z=yx
f(x)=\begin{cases} 0& \text{x=0}\\1& \text{x!=0} \end{cases} f ( x ) = { 0 x=0 1 x!=0 f(x)=\begin{cases}0& \text{x=0}\\1& \text{x!=0}\end{cases} f(x)={01x=0x!=0



6、矩阵

Latex表达式效果
\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} 0 1 1 0 \begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} 0110
\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\\ ( 0 − i i 0 ) \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} (0ii0)
\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} [ 0 − 1 1 0 ] \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} [0110]
\begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix} { 1 0 0 − 1 } \begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix} {1001}
\begin{vmatrix} a & b \\ c & d \end{vmatrix} ∣ a b c d ∣ \begin{vmatrix} a & b \\ c & d \end{vmatrix} acbd
\begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix} ∥ i 0 0 − i ∥ \begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix} i00i



7、求和与积分

LaTex 表达式实际效果
\sum ∑ \sum
\int ∫ \int
\sum_1^n ∑ 1 n \sum_1^n 1n
\sum_{i=0}^\infty i^2 ∑ i = 0 ∞ i 2 \sum_{i=0}^\infty i^2 i=0i2
\prod_{k=1}^n k = n! ∏ k = 1 n k = n ! \prod_{k=1}^n k = n! k=1nk=n!
\infty ∞ \infty
\bigcup ⋃ \bigcup
\bigcap ⋂ \bigcap
\iint ∬ \iint
\iiint ∭ \iiint



8、开方

LaTex 表达式实际效果
\sqrt{x^3} x 3 \sqrt{x^3} x3
\sqrt[3]{\frac xy} x y 3 \sqrt[3]{\frac xy} 3yx



9、分数

LaTex 表达式实际效果
\frac ab a b \frac ab ba
\frac{a+1}{b+1} a + 1 b + 1 \frac{a+1}{b+1} b+1a+1
{a+1\over b+1} a + 1 b + 1 {a+1\over b+1} b+1a+1
\cfrac{a}{b} a b \cfrac{a}{b} ba



10、特殊函数

LaTex 表达式实际效果
\lim lim ⁡ \lim lim
\lim_{x\to 0} lim ⁡ x → 0 \lim_{x\to 0} x0lim
\sin sin ⁡ \sin sin
\cos cos ⁡ \cos cos
\sin x sin ⁡ x \sin x sinx
\cos x cos ⁡ x \cos x cosx
\hat x x ^ \hat x x^
\widehat{xy} x y ^ \widehat{xy} xy
\bar x x ˉ \bar x xˉ
\overline{xyz} x y z ‾ \overline{xyz} xyz
\vec x x ⃗ \vec x x
\overrightarrow{xyz} x y z → \overrightarrow{xyz} xyz
\overleftrightarrow{xyz} x y z ↔ \overleftrightarrow{xyz} xyz
\stackrel{F.T}{\longrightarrow} ⟶ F . T \stackrel{F.T}{\longrightarrow} F.T
\dot x x ˙ \dot x x˙
\ddot x x ¨ \ddot x x¨



11、导数、极限、积分

LaTex表达式实际效果
导数{f}’(x) = x^2 + x f ′ ( x ) = x 2 + x {f}'(x) = x^2 + x f(x)=x2+x
极限\lim_{x \to 0} \frac {3x ^2 +7x^3} {x^2 +5x^4} = 3 lim ⁡ x → 0 3 x 2 + 7 x 3 x 2 + 5 x 4 = 3 \lim_{x \to 0} \frac{3x^2 +7x^3}{x^2 +5x^4} = 3 x0limx2+5x43x2+7x3=3



12、积分

积分中,需要注意的是,在多重积分内 dx 和 dy 之间 使用一个斜杠加一个逗号 , 来增大稍许间距。同样,在两个积分号之间使用一个斜杠加一个感叹号 ! 来减小稍许间距。使之更美观。

\int_a^b f(x) dx 

∫ a b f ( x ) d x \int_a^b f(x)dx abf(x)dx

\int_0^{+\infty} x^n e^{-x} dx = n! 

∫ 0 + ∞ x n e − x d x = n ! \int_0^{+\infty} x^n e^{-x} dx = n! 0+xnexdx=n!

\int_{x^2 + y^2 \leq R^2}   f(x,y) dx dy = 
\int_{\theta=0}^{2\pi}    \int_{r=0}^R    f(r\cos\theta,r\sin\theta) r dr d\theta

∫ x 2 + y 2 ≤ R 2 f ( x , y )   d x   d y = ∫ θ = 0 2 π ∫ r = 0 R f ( r cos ⁡ θ , r sin ⁡ θ ) r   d r   d θ \int_{x^2 + y^2 \leq R^2} f(x,y)\,dx\,dy = \int_{\theta=0}^{2\pi} \int_{r=0}^R f(r\cos\theta,r\sin\theta) r\,dr\,d\theta x2+y2R2f(x,y)dxdy=θ=02πr=0Rf(rcosθ,rsinθ)rdrdθ

$ \int \!\!\! \int_D f(x,y)dxdy  \int \int_D f(x,y)dxdy $

∫  ⁣ ⁣ ⁣ ∫ D f ( x , y ) d x d y = ∫ ∫ D f ( x , y ) d x d y \int \!\!\! \int_D f(x,y) dxdy = \int \int_D f(x,y) dxdy Df(x,y)dxdy=Df(x,y)dxdy

$ i\hbar\frac{\partial \varphi } {\partial {t}} = \frac{-\hbar^2}{2m} 
\left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + 
\frac{\partial^2}{\partial z^2} \right) \varphi  + V \varphi $

i ℏ ∂ φ ∂ t = − ℏ 2 2 m ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 ) φ + V φ i\hbar\frac{\partial \varphi } {\partial {t}} = \frac{-\hbar^2}{2m} \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) \varphi + V \varphi itφ=2m2(x22+y22+z22)φ+Vφ

$ \frac{d}{dt} \int \!\!\! \int \!\!\! \int_{\textbf{R}^3} 
\left | \varphi (r,t) \right|^2 dx dy dz = 0 $

d d t ∫  ⁣ ⁣ ⁣ ∫  ⁣ ⁣ ⁣ ∫ R 3 ∣ φ ( r , t ) ∣ 2 d x d y d z = 0 \frac{d}{dt} \int \!\!\! \int \!\!\! \int_{\textbf{R}^3} \left | \varphi (r,t) \right|^2 dx dy dz = 0 dtdR3φ(r,t)2dxdydz=0



13、特殊符号和符号

LaTex 表达式实际效果LaTex表达式实际效果
\lt < \lt <\gt > \gt >
\le ≤ \le \leq ≤ \leq
\leqq ≦ \leqq \leqslant ⩽ \leqslant
\ge ≥ \ge \geq ≥ \geq
\geqq ≧ \geqq \geqslant ⩾ \geqslant
\neq ≠ \neq =\not\lt ≮ \not\lt <
\not在几乎 所有的符号上划出一个斜线
\times × \times ×\div ÷ \div ÷
\pm ± \pm ±\mp ∓ \mp
\cdot ⋅ \cdot
\cup ∪ \cup \cap ∩ \cap
\setminus ∖ \setminus \subset ⊂ \subset
\subseteq ⊆ \subseteq \subsetneq ⊊ \subsetneq
\supset ⊃ \supset \in ∈ \in
\notin ∉ \notin /\emptyset ∅ \emptyset
\varnothing ∅ \varnothing
{n+1 \choose 2k} ( n + 1 2 k ) {n+1 \choose 2k} (2kn+1)\binom{n+1}{2k} ( n + 1 2 k ) \binom{n+1}{2k} (2kn+1)
\to → \to \rightarrow → \rightarrow
\leftarrow ← \leftarrow \Rightarrow ⇒ \Rightarrow
\Leftarrow ⇐ \Leftarrow \mapsto ↦ \mapsto
\land ∧ \land \lor ∨ \lor
\lnot ¬ \lnot ¬\forall ∀ \forall
\exists ∃ \exists \top ⊤ \top
\bot ⊥ \bot \vdash ⊢ \vdash
\vDash ⊨ \vDash
\star ⋆ \star \ast ∗ \ast
\oplus ⊕ \oplus \circ ∘ \circ
\bullet ∙ \bullet
\approx ≈ \approx \sim ∼ \sim
\simeq ≃ \simeq \cong ≅ \cong
\equiv ≡ \equiv \prec ≺ \prec
\lhd ⊲ \lhd \therefore ∴ \therefore
\infty ∞ \infty \aleph_0 ℵ 0 \aleph_0 0
\nabla ∇ \nabla \partial ∂ \partial
\Im ℑ \Im \Re ℜ \Re
a\equiv b\pmod n a ≡ b ( m o d n ) a\equiv b\pmod n ab(modn)
\ldots … \ldots \cdots ⋯ \cdots
\epsilon ϵ \epsilon ϵ\varepsilon ε \varepsilon ε
\phi ϕ \phi ϕ\varphi φ \varphi φ
\ell ℓ \ell



14、字体

LaTex 表达式字体效果LaTex表达式字体效果
\mathbb{ABCDE} A B C D E \mathbb{ABCDE} ABCDE\Bbb{ABCDEF} A B C D E F \Bbb{ABCDEF} ABCDEF
\mathbf{abcde} a b c d e \mathbf{abcde} abcde\mathtt{ABCDE} A B C D E \mathtt{ABCDE} ABCDE
\mathrm{ABCDE} A B C D E \mathrm{ABCDE} ABCDE\mathsf{ABCDE} A B C D E \mathsf{ABCDE} ABCDE
\mathcal{ABCDE} A B C D E \mathcal{ABCDE} ABCDE\mathscr{ABCDE} A B C D E \mathscr{ABCDE} ABCDE
\mathfrak{ABCDE} A B C D E \mathfrak{ABCDE} ABCDE
ViatorSun CSDN认证博客专家 深度学习 计算机视觉
研究生在读、Github开源世界贡献者,深度学习 & 计算机视觉分享者;
主要研究【深度学习 & 计算机视觉】相关方向,欢迎感兴趣的小伙伴一起交流、探讨~
相关推荐
©️2020 CSDN 皮肤主题: 岁月 设计师:pinMode 返回首页